Introduction
Social Relations Regression
- Social Relations Regression
- additive Effect Model (ANOVA Model): iid model
- Social Relations Model
- Social Relations Covariance Model
- Social Relations Regression Model
- Multiplicative Effect Models
- additive & Multiplicative Effect Models
additive Effect Model (iid model)
\begin{alignat}{2} y_{i,j} &= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{AEM, ANOVA model} \\ y_{i,j} &= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SRM} \\ y_{i,j} &= \beta' \mathbf x_{i,j} && +\mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SR Regression M} \end{alignat}- : sender effect (sociomatrix 의 rowmean)
- : receiver effect (sociomatrix 의 colmean)
| additive Effect Model (iid model) | Social Relations Model (SRM) | Social Relations Regression Model | |
|---|---|---|---|
| Goal | Consider Dependency | sender-receiver correlations (dyadic correlations) | Quantify the association between a particular dyadic variable and some other dyadic or nodal variables^[Combines a linear regression model with the covariance structure of the SRM as follows, where is −dimensional vector of regressors and is a vector of regression coefficient to be estimated.] |
| (2) | Limitation: Unable to represent higher-order network patterns (lack of fit) |
- SRM 에서 들은 mean-zero random variable 들. with effects otherwise being independent 이며 이하를 따름.
- : sender effect (row means of the sociomatrix),
- : receiver effect (column means of the sociomatrix)
목표: dependency 고려
- Social Relations Covariance Model:
You decompese the variance of into three parts:
- : within-row covariance
- : within-col covariance
- : row-col covariance
- : row-col covariance + reciprocity
with all other Cov b/w elements of being 0.
- Social Relations Regression Model:
linear regression model을 SRM 의 covariance structure 를 사용하여 combine. 그 결과값이 가장 위의 수식. 여기서 는 regressor 들의 -dimensional vector 이며, 는 estimate 된 regression coefficient 들의 vector.
한계: high-order network pattern 을 드러내는 것은 불가능. (lack of fit)
Multiplicative Effects Models
\begin{alignat}{2} y_{i,j} &=\beta^{T} \mathbf x_{i,j} && +\mathbf u_{i}^{T} \mathbf v_{j} && +{a}_{i}+b_{j}+\epsilon_{i,j} \tag{AMEM} \\ \tag{Random effects AMEM} \\ V &=M(X,\beta)+U V^{T} && && +a{1}^{T}+1b^{T}+E \tag{GS for AME} \end{alignat}| Goal | |
|---|---|
| Multiplicative Effect Models | Random effect AME model |
| Capture higher-order network patterns | prevent overfitting & provide summaries of certain network dependencies |
- Random effects AME model
- Transformation Models for Non-Gaussian:
| Continuous dyadic variable | Discrete dyadic variable | |
|---|---|---|
| Gaussian AME model | Binary (not friend / friend) | Probit AME model |
| Ordinary (dislike / neutral / like) | Ordinal Probit AME model |
- continuous 에는 binary, ordinary 구분 없음.
| ERGM | Latent Variable Models (latent network) (Stochastic Block Model) | AME |
|---|---|---|
| global properties | ||
| evaluating specific global network patterns of interest simply by including an appropriate sufficient statistic in the model | Description of local, micro-level patterns of relationships among specific nodes | global patterns via estimating the parameters |
| local properties | local patterns via estimating the node-specific effects |
- Comparisons b/w ERGMs vs. SRM
- p1 model:
- : sufficient statics, the total # of ties
- : the # of reciprocated ties
- , : in- & out-degrees
- SRM
- : overall mean of the relations
- : dyadic correlations
- : Heterogeneity in row & col means
p2 model extends the p1 model by including regressors (as does the SRRM). Treats the node-level parameters and as potentially correlated random effects (as do SRM and SRRM).
P1 model is unable to describe more complex forms of dependency such as transitivity or clustering.
P2 model or SRRM can represent some degree of higher-order dependency, still exhibit lack-of-fit and so more complex models are desired.
ERGMs approach to describe higher-order dependencies is to include additional sufficient statistics. However, it can lead to model degeneracy - How to solve?
- Constraining the parameter space
- Finding alternative summary statistics
AME Approach to Represent Complex Patterns
AME 는 low-rank Matrix 를 사용하여 complex pattern 표시. 는 과 를 사용하여 의 형으로 arbitrary degree of precision 으로 approximate 가능. AME model 은 observed network 의 model-based low-dimensional 표현 (representation) 을 제공함.
Limitation of Multiplicative Effects Approach
Not all higher-order moments can be represented by the random effects model for the multiplicative effects (Gaussian random effect model)
예를 들어 dimenison 일 때,
\begin{alignat}{2} &E[\gamma_{i,j}\gamma_{j,k}\gamma_{k,l}\gamma_{l,i}&&]&&=tr(\Psi^4_{uv}) = \sigma^4_{uv} \\ &E[\gamma_{i,j}\gamma_{j,k}\gamma_{k,l}&&] &&=tr(\Psi^3_{uv}) = \sigma^3_{uv} \end{alignat}These moments are not separately estimable, because both completely determined by the single parameter . To separately estimate such moments requires the higher dimension, which is very tricky.
Pros of AME Models
Multiplicative effects matrix 는 sociomatrix 의 reduced-rank representation 을 생산.
의 estimate 는 와 간의, network dependency 를 유도하는 것인, node heterogeneity 에 걸친 summary 를 제공한다.
multiplicative effect 는 simple random effect model 보다 훨씬 더 넓은 range 의 pattern 을 설명해내는 것이 가능.
Cons of AME models
의 estimate 는 imcomplete summary. 이는 오직 node heterogeneity effect 에 대한 (across) Covariance 를 설명해낼 뿐이다.
potential network dependency 에 대한 제한된 summary 만을 제공.
higher-dependency 는 다소 모호 (opaque) 한 채로 남음.
목적이 특정한 종류의 higher-order network dependencies 를 측정하고자 하는 것이라면, ERMGs 쪽이 더욱 straightforward.
| Block Model | Latent Distance Model | |
|---|---|---|
| Assumption | Each node belongs to an unobserved latent class or “block” “stochastic equivalence” | Each node has some unobserved location in a latent Euclidean “social space” |
| Relations b/w nodes | two nodes are determined (statistically) by their block membership within-group density of ties is lower then b/w-group density | the strength of a relation (prob of tie) b/w two nodes is decreasing in the distance b/w them in latent space |
| how to define Membership | members of the same group with the same distribution of relationships to other nodes | closeness b/w two nodes |
| useful when there exists subgroups of nodes with strong withi-group relationships | ||
| latent 와 비교시, SBM 은 large number of block 요구 | SBM 과 비교시, latent에서 social space 에서 같은 위치에 존재할 경우, 2개의 node 는 stochastically equivalent |
Limitation of Latent Variable Models Real networks exhibit combinations of stochastic equivalence and transitivity in varying amounts
Providing incomplete description of the heterogeneity across nodes: How to solve?
- Latent variable models based on multiplicative effects
- Represent both types of network patterns
- Generalization of both models
Inference via Posterior Approximation
- Gibbs Sampling for the AME