Testing
More About Models: Two approaches for linear model
\begin{alignat}{2} E(\epsilon) &= 0, \; \; \; && Cov(\epsilon) &&= \sigma^2 I \tag{Ordinary Least Square, OLS} \\ E(\epsilon) &= 0, && Cov(\epsilon) &&= \sigma^2 \Sigma \tag{Generalized Least Square, GLS} \end{alignat}- Consider
| itslef | Estimation Space | Error Space |
| orthogonal projection onto | ||
- One-Way ANOVA
the parameters in the two models are different, but they are related.
- Simple Linear Regression
※ Note: A unique parameterization for occurs is nonsingular.
- Exercise: Show that a unique parameterization for means .
Testing Models
Consider
let’s partition into
이때 Hypothesis testing procedure can be described as Reduced Model, Full Model. (Example 3.2.0: pp. 52–54).
Let and be the orthogonal projection onto and respectively.
Note that with , is the orthogonal projection onto the orthogonal complement of with respect to , that is,
If RM is true, then should be reasonably small. Note that .
The decision about whether RM is appropriate hinges on deciding whether the vector is large.
The size of ‘s obvious measure is .
The size of ‘s reasonable measure is given by .
-
※ Note that .
-
Theorem 3.2.1.
Consider
\begin{alignat}{2} \dfrac {\dfrac{Y'(M-M_0)Y}{r(M-M_0)}} {\dfrac{Y'(I-M)Y}{r(I-M)}} &= \dfrac {\dfrac{Y'(M-M_0)Y}{df_1}} {\dfrac{Y'(I-M)Y}{df_2}} &&\sim F \Bigg( df_1 , df_2, \dfrac{\beta' X' (M-M_0)X \beta }{2 \sigma^2} && \Bigg) \tag{Under the FM} \\ \\\ \\\ \dfrac {\dfrac{Y'(M-M_0)Y}{r(M-M_0)}} {\dfrac{Y'(I-M)Y}{r(I-M)}} &= \dfrac {\dfrac{Y'(M-M_0)Y}{df_1}} {\dfrac{Y'(I-M)Y}{df_2}} &&\sim F \big( df_1 , df_2, 0 && \big) \tag{Under the RM} \end{alignat}- Note: Example 3.2.2.; pp. 58–59
A Generalized Test Procedure
Assume that is correct. Want to test the adequacy of a model , where and some known vector offset.
- Example 3.2.3.; Multiple Regression
want to test .
\begin{alignat}{2} Y &= X \beta && &&+ \epsilon \tag{FM} \\ Y^\ast &\equiv Y && - X b && \\ &=X \beta && - Xb &&+ \epsilon \\ &=X (\beta && - b) &&+ \epsilon \\ &=X \beta^\ast && &&+ \epsilon \tag{FM} \\ \\\ \\\ Y &= X_0 \gamma && + Xb &&+ \epsilon \tag{RM} \\ Y^\ast &\equiv Y && && && - X b \\ &=X \gamma && &&+ \epsilon \tag{RM} \end{alignat}In addition, when ,
(3) will hold if
Furthermore,
\begin{alignat}{2} Y_\ast ' (M-M_0)Y_\ast &= Y_\ast ' (I-M_0)Y_\ast &&- &&Y_\ast ' (I-M)Y_\ast \; \; \; \; \;\text{ , and } \\ Y ' (I-M)Y &= && && Y_\ast ' (I-M)Y_\ast \end{alignat}Testing Linear Parametric Functions
H_0: Y= X \beta + \epsilon, \; \; \; \; \; \Lambda' \beta=0 \tag{1}
Thus, letting , (in general, ), then
Suppose . Then there is nothing to test and involves only arbitrary side conditions that do not affect the model. (EXAMPLE 3.3.1. pp. 62–64)
thus, its distribution for testing is given by
- Proposition 3.3.2
이윗부분 전혀모르겠음
thus,
For ,
and, under ,
- Definition 3.3.5.
The condition is called the constraint by where . in other words, is the constraint by .
- Do Exercise 3.5:
Show that a necessary and sufficient condition for and to determine the orthogonal constraints on the model is that
Theoretical Complements
Consider testing when is NOT estimable.
let be estimable part of .
is chosen, so that , which means that implies that but is estimable, because .
- Theorem 3.3.6.
let and . Then . Thus and induce the same RM.
- Proposition 3.3.7.
let be estimable and . then .
- Corollary 3.3.8.
$
\mathcal{C}(\Lambda_0) = \mathcal{C}(\Lambda) ; \cap ; \mathcal{C}(X’) = {0 }
\
\Updownarrow
\
\mathcal{C}(XU) ; \cap ; \mathcal{C}(X)
$
A Generalized Test Procedure
Consider as below, whose column space is solvable.
$ \begin{alignat}{2}
\Lambda ’ \beta =
\Lambda ’ b = d
; ; ; &\iff \Lambda ’ (\beta - b) &&= 0
\
&\iff (\beta - b) &&\perp \mathcal{C}(\Lambda)
\
&\iff (\beta - b) &&\in \mathcal{C}(U) ; ; ; ; ; ; &&\text{where } ; \mathcal{C}(U) = \mathcal{C}(\Lambda)^\perp
\
&\iff (\beta - b) &&= U_\gamma &&\exists \gamma
\
&\iff X\beta - Xb &&= XU_\gamma
\
& ; ; ; \Updownarrow
\
X\beta &= XU_\gamma + Xb, \
Y &= X \beta + \epsilon \ &= X U_\gamma + Xb + \epsilon \ &= X_0 \gamma + Xb + \epsilon, && && \text{where } ; X_0 = XU
\end{alignat}
$
if , then and its test statistics is
$ \begin{align}
F = \dfrac {\dfrac{(Y-Xb)‘M_{MP}(Y-Xb)}{r \Big(M_{MP} \Big)}} {\dfrac{(Y-Xb)‘(I-M)(Y-Xb)}{r \Big(I-M \Big)}}
=
\dfrac {\dfrac{(\Lambda ’ \hat \beta - d)’ \Big[ \Lambda’(X’X)^{-}\Lambda \Big]^- (\Lambda ’ \hat \beta - d)}{r(\Lambda)}} {MSE}
\sim F(?, ?, ?)
\end{align} $
- Remark: (EXAMPLE 3.3.9.: pp.71–72, EXAMPLE 3.4.1.: pp.75)
If , the same reduced model results if we take , where and . Note that, in this construction, if is estimable, for any .
Testing Single Degrees of Freedom in a Given Subspace
$ RM: Y=X_ 0 \gamma + \epsilon ; ; ; ; ; vs. ; ; ; ; ;
FM: Y=X \beta + \epsilon, ; ; ; ; ; with; ; \mathcal{C}(X_0) \subset \mathcal{C}(X)
$
let , consider .
if , i.e. , then .
- Proposition 3.3.2
Since ,
$
\begin{align}
&\mathcal{C}(M - M_0) = \mathcal{C}(X_0){\mathcal{C}(X)}^\perp \equiv \mathcal{C}(XU){\mathcal{C}(X)}^\perp = \mathcal{C}(MP)
\
\Longrightarrow ; ; ;
&M \rho \in \mathcal{C}(M_\ast)
\
\Longrightarrow ; ; ;
&M \rho = M_\ast M \rho = M_\ast \rho
\
\Longrightarrow ; ; ;
&\rho ’ \hat \beta = \rho ’ M_\ast Y = \rho ’ M Y
\end{align} $
thus the test statistic for is
$
\dfrac{Y ’ M_\ast \rho ( \rho ’ M_\ast \rho )^{-1} \rho ’ M_\ast Y }{MSE}
=
\dfrac{\dfrac{(\rho ’ M_\ast Y)^2}{\rho ’ M_\ast \rho} }{MSE}
$
Breaking SS into Independent Components
Consider . set
$
\begin{alignat}{2} &SSR(X_1 \vert X_0) &&\equiv Y ’ (M-M_0)Y && \tag{Sum of Squares for regression X1 after X0}\
&SSR(X) &&\equiv Y ’ MY \
&SSR(X_0) &&\equiv Y ’ M_0 Y \
&SSR(X) &&= SSR(X_0) &&+ SSR (X_1 \vert X_0)
\end{alignat} $
- Note: if , then .
General Theory
Let and be the orthogonal projection operator into and respectively. Then, with , defines a test statistic as below.
$
\dfrac {\dfrac{Y’ M_\ast Y}{r(M_\ast)}} {\dfrac{Y’ (I-M) Y}{r(I-M)}}
; ; ; \text{for RM}:Y = X_\ast \gamma + \epsilon
$
$ \begin{align}
&I-(M-M_\ast ) &&= (I-M) + M_\ast
\
&\mathcal{C}(M-M_\ast) &&:\tag{Estimation Space, under H0}
\
&\mathcal{C}(M_\ast) &&:\tag{Test Space, under H0}
\
&\mathcal{C} \Big(I - (M-M_\ast)\Big) &&:\tag{Error Space, under H0}
\end{align}
$
Using Gram-Schmidt procedure, let’s construct so that
$
M_\ast = RR’ = \sum_{i=1}^r R_iR_i ’ = \sum_{i=1}^r M_i, ; ; ; ; ; R=(R_1 , \cdots, R_r)
$
and for . By Theorem 1.3.7,
Next, , therefore when ,
$
\dfrac {\dfrac{Y’M_i Y}{r(M_i)}} {\dfrac{Y’(I-M) Y}{r(I-M)}}
\sim F \Bigg( 1, r(I-M), \dfrac{1}{2 \sigma^2} \beta ’ X’ M_i X \beta \Bigg)
$
$
\begin{alignat}{2}
& && && &&\beta ’ X’ M_\ast X \beta ; ; &&= ; ; \sum_{i=1}^r \beta ’ X’ M_i X \beta && =0
; ; ;
\
&\iff && && \forall i ; ; : ; ; && \beta ’ X’ M_i X \beta && &&=0
\
&\iff && &&\forall i ; ; : ; ; &&R_i ’ X \beta && &&= 0
\
&\iff && && &&H_0 \text{ is true.}
\end{alignat} $
- EXAMPLE 3.6.1.: Balanced design; pp.79–80
- EXAMPLE 3.6.2.: Unbalanced design;pp.80–81
Two-Way ANOVA
$ \begin{alignat}{2} y_{ijk} &= \mu + \alpha_i + \eta_j &&+ \epsilon_{ijk} \tag{FM}
\
y_{ijk} &= \mu + \alpha_i &&+ \epsilon_{ijk} \tag{RM}
\end{alignat} $
$ \begin{align} M &= M_\mu + M_\alpha + M_\eta
\
Y’(M-M_0)Y &= R(\eta ; \Big \vert ; \alpha, ; \mu) \tag{1}
\end{align} $
- Reduction in SSE, due to fitting ‘s after and ‘s.
Next,
$
\begin{alignat}{2} y_{ijk} &= \mu + \alpha_i &&+ \epsilon_{ijk} \tag{FM}
\
y_{ijk} &= \mu &&+ \epsilon_{ijk} \tag{RM}
\
\\
\\
Y’(M_0-M_J)Y &= R(\alpha ; \Big \vert ; \mu)
\
Y’(M-M_J)Y &= R(\alpha, ; \eta ; \Big \vert ; \mu)
\
&= R(\eta ; \Big \vert ; \mu, ; \alpha) &&+ R(\alpha ; \Big \vert ; \mu)
\end{alignat}
$
In general,
$
\begin{alignat}{2}
R(\eta ; \Big \vert ; \alpha, ; \mu) &\not = R(\eta ; \Big \vert ; \mu)
\
R(\alpha ; \Big \vert ; \eta, ; \mu) & \not = R(\alpha ; \Big \vert ; \mu)
\end{alignat}
$
In paricular, for balanced design, if ,
$
\begin{alignat}{2}
R(\eta ; \Big \vert ; \alpha, ; \mu) & = R(\eta ; \Big \vert ; \mu)
\
R(\alpha ; \Big \vert ; \eta, ; \mu) & = R(\alpha ; \Big \vert ; \mu)
\end{alignat}
$
- Proposition 3.6.3.
$
\begin{alignat}{2}
R(\eta ; \Big \vert ; \alpha, ; \mu) & = R(\eta ; \Big \vert ; \mu)
; ; ; ; ; &&\iff ; ; ; ; ;
\mathcal{C}(X_1 - M_j) \perp \mathcal{C}(X_0 - M_j)
\
\text{that is}; ; ; ; ; ; ;
M_1 - M_J& = M-M_0
; ; ; ; ; &&\iff ; ; ; ; ;
(M_1 - M_J)(M_0 - M_J) = 0,
; ; ; ; ; \text{where} ; &&R(\eta ; \Big \vert ; \alpha, ; \mu) &&= Y’(M-M_0)Y
\
& && && R(\eta ; \Big \vert ; \mu) &&= Y’(M_1 -M_0)Y
\end{alignat}
$
Confidence Regions
Confidence Region(CR) for consists of all the vectors satisfying the inequality
$
\dfrac {\dfrac{\Big[\Lambda ’ \hat \beta - d\Big]’ \Big[\Lambda ’ (X’X)^- \Lambda\Big]^- \Big[\Lambda ’ \hat \beta - d\Big]}{r(\Lambda)}} {MSE}
\le \Big( 1- \alpha, ; r(\Lambda), ; r(I-M) \Big)
$
These vectors form an ellipsoid in -dimensional space.
For regression problems, if we take , then .
The CR is
$ \begin{alignat}{2}
& \dfrac {\dfrac{\Big[\Lambda ’ \hat \beta - d\Big]’ \Big[\Lambda ’ (X’X)^- \Lambda\Big]^- \Big[\Lambda ’ \hat \beta - d\Big]}{r(\Lambda)}} {MSE}
; ; ; &&
; ; ; & \dfrac {\dfrac{\Big(\hat \beta - \beta \Big)’ \Big( X’X \Big)\Big(\hat \beta - \beta \Big)}
{p}} {MSE}
; ; ;
&&\le
; ; ; \Big( 1- \alpha, ; p, ; n-p \Big)
\end{alignat}
$
Tests for Generalized Least Squares Models
$ \begin{alignat}{4}
&Y &&= &&X \beta &&+ &&\epsilon ; ; ; ; ; &&vs. ; ; ; ; ; &&Y = &&X_0 \beta_0 &&+ &&\epsilon
, ; ; ; ; ; && \epsilon \sim N(0, ; \sigma^2 V)
\tag{1}
\
& && && && && && \Updownarrow
\
Q^{-1}&Y &&= Q^{-1} &&X \beta &&+ Q^{-1} &&\epsilon ; ; ; ; ; ; ; ; ; &&vs. ; ; ; ; ; Q^{-1} &&Y = Q^{-1} &&X_0 \beta_0 &&+ Q^{-1} &&\epsilon
, ; ; ; ; ; Q^{-1} && \epsilon \sim N(0, ; \sigma^2 I)
\tag{2}
\end{alignat} $
test (1) and (2) is equal.
- Note: .
From Section 2.7,
$ \begin{align}
A &= X(X’V^{-1}X)^- X’ \ast V^{-1}
\ \
MSE &= \dfrac{Y’ (I-A)’ V^{-1} (I-A)Y}{n-r(X)}
\ \
A_0 &= X_0(X_0’V^{-1}X_0)^- X_0’ \ast V^{-1}
\end{align} $
- Theorem 3.8.1
$ \begin{align}
\dfrac{\dfrac{Y’ (A-A_0) V^{-1} (A-A_0)Y}{r(X) - r(X_0 )}}{MSE} &\sim F \Big( r(X)-r(X_0), ; n-r(X) , ; \delta^2 \Big)
\ \
\delta^2 &= \dfrac{\beta ’ X’ (A-A_0) V^{-1} (A-A_0)X \beta}{2\sigma^2} \tag{1}
\
\
\\
{\beta ’ X’ (A-A0) V^{-1} (A-A_0)X \beta} ; ; ; ; ; &\iff ; ; ; ; ; E(Y) \in \mathcal{C}(X_0) \tag{2}
\end{align} $
- Theorem 3.8.2
let be estimable. then the test statistic for is
$ \begin{align}
\dfrac{\dfrac{\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta}{r(\Lambda)}}{MSE} &\sim F \Big( r(\lambda), ; n-r(X) , ; \delta^2 \Big)
\ \
\delta^2 &= \dfrac{\beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \beta}{2\sigma^2} \tag{1}
\
\
\\
{\beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \beta} ; ; ; ; ; &\iff ; ; ; ; ; \Lambda ’ \beta = 0\tag{2}
\end{align} $
- Theorem 3.8.3
$ \begin{align}
\dfrac{Y’ (A-A_0) V^{-1} (A-A_0)Y}{\sigma^2} &\sim \chi^2\Big(r(x) - r(X_0), ; \delta^2 \Big)
\ \
\delta^2 &= \dfrac{\beta ’ X’ (A-A_0) V^{-1} (A-A_0)X \beta}{2\sigma^2},
\ \
\sigma^2 = 0 ; ; ; ; ; &\iff E(Y) \in \mathcal{C}(X_0)
\tag{1}
\
\
\\
\dfrac{\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta}{2\sigma^2}
&\sim \chi^2 \Big( r(\Lambda) , ; \delta^2 \Big)
\ \
\delta^2 &= {\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta},
\ \
\sigma^2 = 0 ; ; ; ; ; &\iff \Lambda ’ \beta = 0 \tag{2}
\end{align} $