Testing

More About Models: Two approaches for linear model

\begin{alignat}{2} E(\epsilon) &= 0, \; \; \; && Cov(\epsilon) &&= \sigma^2 I \tag{Ordinary Least Square, OLS} \\ E(\epsilon) &= 0, && Cov(\epsilon) &&= \sigma^2 \Sigma \tag{Generalized Least Square, GLS} \end{alignat}
  • Consider
itslefEstimation SpaceError Space
orthogonal projection onto
  • One-Way ANOVA

the parameters in the two models are different, but they are related.

  • Simple Linear Regression

※ Note: A unique parameterization for occurs is nonsingular.

  • Exercise: Show that a unique parameterization for means .

Testing Models

Consider

let’s partition into

이때 Hypothesis testing procedure can be described as Reduced Model, Full Model. (Example 3.2.0: pp. 52–54).

Let and be the orthogonal projection onto and respectively.

Note that with , is the orthogonal projection onto the orthogonal complement of with respect to , that is,

If RM is true, then should be reasonably small. Note that .

The decision about whether RM is appropriate hinges on deciding whether the vector is large.

The size of ‘s obvious measure is .

The size of ‘s reasonable measure is given by .

  • ※ Note that .

  • Theorem 3.2.1.

Consider

\begin{alignat}{2} \dfrac {\dfrac{Y'(M-M_0)Y}{r(M-M_0)}} {\dfrac{Y'(I-M)Y}{r(I-M)}} &= \dfrac {\dfrac{Y'(M-M_0)Y}{df_1}} {\dfrac{Y'(I-M)Y}{df_2}} &&\sim F \Bigg( df_1 , df_2, \dfrac{\beta' X' (M-M_0)X \beta }{2 \sigma^2} && \Bigg) \tag{Under the FM} \\ \\\ \\\ \dfrac {\dfrac{Y'(M-M_0)Y}{r(M-M_0)}} {\dfrac{Y'(I-M)Y}{r(I-M)}} &= \dfrac {\dfrac{Y'(M-M_0)Y}{df_1}} {\dfrac{Y'(I-M)Y}{df_2}} &&\sim F \big( df_1 , df_2, 0 && \big) \tag{Under the RM} \end{alignat}
  • Note: Example 3.2.2.; pp. 58–59

A Generalized Test Procedure

Assume that is correct. Want to test the adequacy of a model , where and some known vector offset.

  • Example 3.2.3.; Multiple Regression

want to test .

\begin{alignat}{2} Y &= X \beta && &&+ \epsilon \tag{FM} \\ Y^\ast &\equiv Y && - X b && \\ &=X \beta && - Xb &&+ \epsilon \\ &=X (\beta && - b) &&+ \epsilon \\ &=X \beta^\ast && &&+ \epsilon \tag{FM} \\ \\\ \\\ Y &= X_0 \gamma && + Xb &&+ \epsilon \tag{RM} \\ Y^\ast &\equiv Y && && && - X b \\ &=X \gamma && &&+ \epsilon \tag{RM} \end{alignat}

In addition, when ,

(3) will hold if

Furthermore,

\begin{alignat}{2} Y_\ast ' (M-M_0)Y_\ast &= Y_\ast ' (I-M_0)Y_\ast &&- &&Y_\ast ' (I-M)Y_\ast \; \; \; \; \;\text{ , and } \\ Y ' (I-M)Y &= && && Y_\ast ' (I-M)Y_\ast \end{alignat}

Testing Linear Parametric Functions

H_0: Y= X \beta + \epsilon, \; \; \; \; \; \Lambda' \beta=0 \tag{1}

Thus, letting , (in general, ), then

Suppose . Then there is nothing to test and involves only arbitrary side conditions that do not affect the model. (EXAMPLE 3.3.1. pp. 62–64)

thus, its distribution for testing is given by

  • Proposition 3.3.2
\begin{align} \mathcal{C} \Big[ (I-M_{MP})X \ \Big] &= \mathcal{C} (X) \; \cap \; \mathcal{C} (MP)^\perp \\ &= \mathcal{C} (X) \; \cap \; \mathcal{C} (P)^\perp \tag{EXAMPLE 3.3.4.: pp.66–67} \end{align} $ let $\Lambda ' \beta$ is estimable, i.e., $\Lambda = X'P$. then $\mathcal{C}(\Lambda) = \mathcal{C}(X'P) =\mathcal{C}(MP)$, and $X \hat \beta = MY$, and $\Lambda ' \hat \beta = P' X \hat \beta = P' M Y$. then

이윗부분 전혀모르겠음

thus,

For ,

and, under ,

  • Definition 3.3.5.

The condition is called the constraint by where . in other words, is the constraint by .

  • Do Exercise 3.5:

Show that a necessary and sufficient condition for and to determine the orthogonal constraints on the model is that


Theoretical Complements

Consider testing when is NOT estimable.

let be estimable part of .

is chosen, so that , which means that implies that but is estimable, because .

  • Theorem 3.3.6.

let and . Then . Thus and induce the same RM.

  • Proposition 3.3.7.

let be estimable and . then .

  • Corollary 3.3.8.

$

\mathcal{C}(\Lambda_0) = \mathcal{C}(\Lambda) ; \cap ; \mathcal{C}(X’) = {0 }

\

\Updownarrow

\

\mathcal{C}(XU) ; \cap ; \mathcal{C}(X)

$


A Generalized Test Procedure

Consider as below, whose column space is solvable.

$ \begin{alignat}{2}

\Lambda ’ \beta =

\Lambda ’ b = d

; ; ; &\iff \Lambda ’ (\beta - b) &&= 0

\

&\iff (\beta - b) &&\perp \mathcal{C}(\Lambda)

\

&\iff (\beta - b) &&\in \mathcal{C}(U) ; ; ; ; ; ; &&\text{where } ; \mathcal{C}(U) = \mathcal{C}(\Lambda)^\perp

\

&\iff (\beta - b) &&= U_\gamma &&\exists \gamma

\

&\iff X\beta - Xb &&= XU_\gamma

\

& ; ; ; \Updownarrow

\

X\beta &= XU_\gamma + Xb, \

Y &= X \beta + \epsilon \ &= X U_\gamma + Xb + \epsilon \ &= X_0 \gamma + Xb + \epsilon, && && \text{where } ; X_0 = XU

\end{alignat}

$

if , then and its test statistics is

$ \begin{align}

F = \dfrac {\dfrac{(Y-Xb)‘M_{MP}(Y-Xb)}{r \Big(M_{MP} \Big)}} {\dfrac{(Y-Xb)‘(I-M)(Y-Xb)}{r \Big(I-M \Big)}}

=

\dfrac {\dfrac{(\Lambda ’ \hat \beta - d)’ \Big[ \Lambda’(X’X)^{-}\Lambda \Big]^- (\Lambda ’ \hat \beta - d)}{r(\Lambda)}} {MSE}

\sim F(?, ?, ?)

\end{align} $

  • Remark: (EXAMPLE 3.3.9.: pp.71–72, EXAMPLE 3.4.1.: pp.75)

If , the same reduced model results if we take , where and . Note that, in this construction, if is estimable, for any .


Testing Single Degrees of Freedom in a Given Subspace

$ RM: Y=X_ 0 \gamma + \epsilon ; ; ; ; ; vs. ; ; ; ; ;

FM: Y=X \beta + \epsilon, ; ; ; ; ; with; ; \mathcal{C}(X_0) \subset \mathcal{C}(X)

$

let , consider .

if , i.e. , then .

  • Proposition 3.3.2

Since ,

$

\begin{align}

&\mathcal{C}(M - M_0) = \mathcal{C}(X_0){\mathcal{C}(X)}^\perp \equiv \mathcal{C}(XU){\mathcal{C}(X)}^\perp = \mathcal{C}(MP)

\

\Longrightarrow ; ; ;

&M \rho \in \mathcal{C}(M_\ast)

\

\Longrightarrow ; ; ;

&M \rho = M_\ast M \rho = M_\ast \rho

\

\Longrightarrow ; ; ;

&\rho ’ \hat \beta = \rho ’ M_\ast Y = \rho ’ M Y

\end{align} $

thus the test statistic for is

$

\dfrac{Y ’ M_\ast \rho ( \rho ’ M_\ast \rho )^{-1} \rho ’ M_\ast Y }{MSE}

=

\dfrac{\dfrac{(\rho ’ M_\ast Y)^2}{\rho ’ M_\ast \rho} }{MSE}

$


Breaking SS into Independent Components

Consider . set

$

\begin{alignat}{2} &SSR(X_1 \vert X_0) &&\equiv Y ’ (M-M_0)Y && \tag{Sum of Squares for regression X1 after X0}\

&SSR(X) &&\equiv Y ’ MY \

&SSR(X_0) &&\equiv Y ’ M_0 Y \

&SSR(X) &&= SSR(X_0) &&+ SSR (X_1 \vert X_0)

\end{alignat} $

  • Note: if , then .

General Theory

Let and be the orthogonal projection operator into and respectively. Then, with , defines a test statistic as below.

$

\dfrac {\dfrac{Y’ M_\ast Y}{r(M_\ast)}} {\dfrac{Y’ (I-M) Y}{r(I-M)}}

; ; ; \text{for RM}:Y = X_\ast \gamma + \epsilon

$

$ \begin{align}

&I-(M-M_\ast ) &&= (I-M) + M_\ast

\

&\mathcal{C}(M-M_\ast) &&:\tag{Estimation Space, under H0}

\

&\mathcal{C}(M_\ast) &&:\tag{Test Space, under H0}

\

&\mathcal{C} \Big(I - (M-M_\ast)\Big) &&:\tag{Error Space, under H0}

\end{align}

$

Using Gram-Schmidt procedure, let’s construct so that

$

M_\ast = RR’ = \sum_{i=1}^r R_iR_i ’ = \sum_{i=1}^r M_i, ; ; ; ; ; R=(R_1 , \cdots, R_r)

$

and for . By Theorem 1.3.7,

Next, , therefore when ,

$

\dfrac {\dfrac{Y’M_i Y}{r(M_i)}} {\dfrac{Y’(I-M) Y}{r(I-M)}}

\sim F \Bigg( 1, r(I-M), \dfrac{1}{2 \sigma^2} \beta ’ X’ M_i X \beta \Bigg)

$

$

\begin{alignat}{2}

& && && &&\beta ’ X’ M_\ast X \beta ; ; &&= ; ; \sum_{i=1}^r \beta ’ X’ M_i X \beta && =0

; ; ;

\

&\iff && && \forall i ; ; : ; ; && \beta ’ X’ M_i X \beta && &&=0

\

&\iff && &&\forall i ; ; : ; ; &&R_i ’ X \beta && &&= 0

\

&\iff && && &&H_0 \text{ is true.}

\end{alignat} $

  • EXAMPLE 3.6.1.: Balanced design; pp.79–80
  • EXAMPLE 3.6.2.: Unbalanced design;pp.80–81

Two-Way ANOVA

$ \begin{alignat}{2} y_{ijk} &= \mu + \alpha_i + \eta_j &&+ \epsilon_{ijk} \tag{FM}

\

y_{ijk} &= \mu + \alpha_i &&+ \epsilon_{ijk} \tag{RM}

\end{alignat} $

$ \begin{align} M &= M_\mu + M_\alpha + M_\eta

\

Y’(M-M_0)Y &= R(\eta ; \Big \vert ; \alpha, ; \mu) \tag{1}

\end{align} $

  1. Reduction in SSE, due to fitting ‘s after and ‘s.

Next,

$

\begin{alignat}{2} y_{ijk} &= \mu + \alpha_i &&+ \epsilon_{ijk} \tag{FM}

\

y_{ijk} &= \mu &&+ \epsilon_{ijk} \tag{RM}

\

\\

\\

Y’(M_0-M_J)Y &= R(\alpha ; \Big \vert ; \mu)

\

Y’(M-M_J)Y &= R(\alpha, ; \eta ; \Big \vert ; \mu)

\

&= R(\eta ; \Big \vert ; \mu, ; \alpha) &&+ R(\alpha ; \Big \vert ; \mu)

\end{alignat}

$

In general,

$

\begin{alignat}{2}

R(\eta ; \Big \vert ; \alpha, ; \mu) &\not = R(\eta ; \Big \vert ; \mu)

\

R(\alpha ; \Big \vert ; \eta, ; \mu) & \not = R(\alpha ; \Big \vert ; \mu)

\end{alignat}

$

In paricular, for balanced design, if ,

$

\begin{alignat}{2}

R(\eta ; \Big \vert ; \alpha, ; \mu) & = R(\eta ; \Big \vert ; \mu)

\

R(\alpha ; \Big \vert ; \eta, ; \mu) & = R(\alpha ; \Big \vert ; \mu)

\end{alignat}

$

  • Proposition 3.6.3.

$

\begin{alignat}{2}

R(\eta ; \Big \vert ; \alpha, ; \mu) & = R(\eta ; \Big \vert ; \mu)

; ; ; ; ; &&\iff ; ; ; ; ;

\mathcal{C}(X_1 - M_j) \perp \mathcal{C}(X_0 - M_j)

\

\text{that is}; ; ; ; ; ; ;

M_1 - M_J& = M-M_0

; ; ; ; ; &&\iff ; ; ; ; ;

(M_1 - M_J)(M_0 - M_J) = 0,

; ; ; ; ; \text{where} ; &&R(\eta ; \Big \vert ; \alpha, ; \mu) &&= Y’(M-M_0)Y

\

& && && R(\eta ; \Big \vert ; \mu) &&= Y’(M_1 -M_0)Y

\end{alignat}

$


Confidence Regions

Confidence Region(CR) for consists of all the vectors satisfying the inequality

$

\dfrac {\dfrac{\Big[\Lambda ’ \hat \beta - d\Big]’ \Big[\Lambda ’ (X’X)^- \Lambda\Big]^- \Big[\Lambda ’ \hat \beta - d\Big]}{r(\Lambda)}} {MSE}

\le \Big( 1- \alpha, ; r(\Lambda), ; r(I-M) \Big)

$

These vectors form an ellipsoid in -dimensional space.

For regression problems, if we take , then .

The CR is

$ \begin{alignat}{2}

& \dfrac {\dfrac{\Big[\Lambda ’ \hat \beta - d\Big]’ \Big[\Lambda ’ (X’X)^- \Lambda\Big]^- \Big[\Lambda ’ \hat \beta - d\Big]}{r(\Lambda)}} {MSE}

; ; ; &&

; ; ; & \dfrac {\dfrac{\Big(\hat \beta - \beta \Big)’ \Big( X’X \Big)\Big(\hat \beta - \beta \Big)}

{p}} {MSE}

; ; ;

&&\le

; ; ; \Big( 1- \alpha, ; p, ; n-p \Big)

\end{alignat}

$


Tests for Generalized Least Squares Models

$ \begin{alignat}{4}

&Y &&= &&X \beta &&+ &&\epsilon ; ; ; ; ; &&vs. ; ; ; ; ; &&Y = &&X_0 \beta_0 &&+ &&\epsilon

, ; ; ; ; ; && \epsilon \sim N(0, ; \sigma^2 V)

\tag{1}

\

& && && && && && \Updownarrow

\

Q^{-1}&Y &&= Q^{-1} &&X \beta &&+ Q^{-1} &&\epsilon ; ; ; ; ; ; ; ; ; &&vs. ; ; ; ; ; Q^{-1} &&Y = Q^{-1} &&X_0 \beta_0 &&+ Q^{-1} &&\epsilon

, ; ; ; ; ; Q^{-1} && \epsilon \sim N(0, ; \sigma^2 I)

\tag{2}

\end{alignat} $

test (1) and (2) is equal.

  • Note: .

From Section 2.7,

$ \begin{align}

A &= X(X’V^{-1}X)^- X’ \ast V^{-1}

\ \

MSE &= \dfrac{Y’ (I-A)’ V^{-1} (I-A)Y}{n-r(X)}

\ \

A_0 &= X_0(X_0’V^{-1}X_0)^- X_0’ \ast V^{-1}

\end{align} $

  • Theorem 3.8.1

$ \begin{align}

\dfrac{\dfrac{Y’ (A-A_0) V^{-1} (A-A_0)Y}{r(X) - r(X_0 )}}{MSE} &\sim F \Big( r(X)-r(X_0), ; n-r(X) , ; \delta^2 \Big)

\ \

\delta^2 &= \dfrac{\beta ’ X’ (A-A_0) V^{-1} (A-A_0)X \beta}{2\sigma^2} \tag{1}

\

\

\\

{\beta ’ X’ (A-A0) V^{-1} (A-A_0)X \beta} ; ; ; ; ; &\iff ; ; ; ; ; E(Y) \in \mathcal{C}(X_0) \tag{2}

\end{align} $

  • Theorem 3.8.2

let be estimable. then the test statistic for is

$ \begin{align}

\dfrac{\dfrac{\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta}{r(\Lambda)}}{MSE} &\sim F \Big( r(\lambda), ; n-r(X) , ; \delta^2 \Big)

\ \

\delta^2 &= \dfrac{\beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \beta}{2\sigma^2} \tag{1}

\

\

\\

{\beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \beta} ; ; ; ; ; &\iff ; ; ; ; ; \Lambda ’ \beta = 0\tag{2}

\end{align} $

  • Theorem 3.8.3

$ \begin{align}

\dfrac{Y’ (A-A_0) V^{-1} (A-A_0)Y}{\sigma^2} &\sim \chi^2\Big(r(x) - r(X_0), ; \delta^2 \Big)

\ \

\delta^2 &= \dfrac{\beta ’ X’ (A-A_0) V^{-1} (A-A_0)X \beta}{2\sigma^2},

\ \

\sigma^2 = 0 ; ; ; ; ; &\iff E(Y) \in \mathcal{C}(X_0)

\tag{1}

\

\

\\

\dfrac{\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta}{2\sigma^2}

&\sim \chi^2 \Big( r(\Lambda) , ; \delta^2 \Big)

\ \

\delta^2 &= {\hat \beta ’ \Lambda \Big[ \Lambda ’ (X’V^{-1}X)^- \Lambda \Big]^- \Lambda ’ \hat \beta},

\ \

\sigma^2 = 0 ; ; ; ; ; &\iff \Lambda ’ \beta = 0 \tag{2}

\end{align} $